Journal

  1. F. Huang, M. Du, C. Ma, X. He, F. Suo, J. Li, T. Wu, N. Wang; “Near-zero TCF 11.6-GHz lamb wave resonator based on 128°Y-cut LiNbO3,” Appl. Phys. Lett. 18 Nov. 2024; 125 (21): 212201. https://doi.org/10.1063/5.0233718
  2. W.X. Huang, L.P. Xia, T. Li, J.W. Li, T. Wu and Y. Zou, “Aluminum Nitride Assisted Silicon Thermo-Optic Phase Shifter,” in Journal of Lightwave Technology, vol. 42, no. 24, pp. 8826-8831, 15 Dec.15, 2024, doi: 10.1109/JLT.2024.3435534.
  3. Y. Wang, M. Du, J. Li, D. Luo and T. Wu, “Angle-Dependent In-Plane Magnetic Field Detection by MEMS Resonant Sensor,” in IEEE Transactions on Magnetics, vol. 60, no. 9, pp. 1-5, Sept. 2024, Art no. 4000505, doi: 10.1109/TMAG.2024.3432158
  4. Y. Zhang, T. Jin, Y. Deng, et al. “A low-voltage-driven MEMS ultrasonic phased-array transducer for fast 3D volumetric imaging,” Microsyst. Nanoeng. 10, 128 (2024). https://doi.org/10.1038/s41378-024-00755-9
  5. K. Bian, Z. Li, Y. Liu, S. Xu, X. Zhao, Y. Qiu, Y. Dong, Q. Zhong, T. Wu, S. Zheng, and T. Hu, “Demonstration of acousto-optical modulation based on a thin-film AlScN photonic platform,” Photon. Res.12, 1138-1149 (2024), doi: 10.1364/PRJ.517719 (Editors’ Pick)
  6. Z. Xie, M. Du, J. Li, T. Wu, Y. Fu and J. Xie, “Analysis and Suppression of Spurious In-Plane Lamé-Like Modes in Lamb Wave Resonators,” in IEEE Transactions on Electron Devices, vol. 71, no. 9, pp. 5645-5651, Sept. 2024, doi: 10.1109/TED.2024.3421178.
  7. M.Y. Du, F.X. Huang, J.W. Li, Y.S. Liu, X.K. Xu, N. Wang, T. Wu; “Asymmetrical Lamb wave mode resonant infrared detector based on lithium niobate thin film.” Appl. Phys. Lett. 6 May 2024; 124 (19): 192202. https://doi.org/10.1063/5.0196015
  8. X.K. Xu, Y.S. Liu, Tao Wu; “On-chip topological phononic crystal acoustic waveguide based on lithium niobate thin films.” Appl. Phys. Lett. 15 April 2024; 124 (16): 162203. https://doi.org/10.1063/5.0190058
  9. Y.S. Liu, K.F. Liu, J.W. Li, Y. Li, and T. Wu. “Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin FilmMicromachines 15, no. 4: 477. Apr. 2024; https://doi.org/10.3390/mi15040477
  10. Z.F. Luo, D. Li, X. Le, T. He, S. Shao, Q. Lv, Z. Liu, C. Lee, T. Wu, “Ultra-compact and high-performance suspended aluminum scandium nitride Lamb wave humidity sensor with a graphene oxide layer,” Nanoscale, 16, 10230-10238, 2024, doi: 10.1039/D3NR05684H. (Cover)
  11. J. Wu et al., “Non-zero Power Flow Angles in Surface Acoustic Wave Resonators for Transverse Mode Suppression,” in IEEE Electron Device Letters, vol. 45, no. 5, pp. 881-884, May 2024, doi: 10.1109/LED.2024.3381150
  12. Y. Wang, S. Wu, W.J. Wang, T. Wu, and X.X. Li. “Piezoelectric Micromachined Ultrasonic Transducers with Micro-Hole Inter-Etch and Sealing Process on (111) Silicon WaferMicromachines 15, no. 4: 482, March 2024. https://doi.org/10.3390/mi15040482
  13. K.F. Liu, Y. Lu, S. Wu, X. Li and T. Wu,Design of Piezoelectric Micromachined Ultrasonic Transducers using High-order Mode with High Performance and High Frequency,” in IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, vol. 3, pp. 176-185, Aug. 2023, doi: 10.1109/OJUFFC.2023.3307085.
  14. K. Yadagiri, , Y. Wang & T. Wu, “Magnetic field driven magnetic domains and ferromagnetic resonances in multilayer thin films Ta/FeGaB/Ta for microwave application,” in J Mater Sci 58, 11327–11338 (2023). https://doi.org/10.1007/s10853-023-08713-y
  15. Y. Qian et al., “Compensation of Hot Carrier Degradation Enabled by Forward Back Bias in π-GAA-π MOSFET,” in IEEE Journal of the Electron Devices Society, vol. 11, pp. 319-324, 2023, doi: 10.1109/JEDS.2023.3278936.
  16. B. Wang, X. Zhang, L. Zhang, C. Li, T. Wu and X. Wang, “Investigation of Transducer Distribution in Compressive Thermoacoustic Tomography for Breast Cancer Detection,” in IEEE Sensors Journal, vol. 24, no. 1, pp. 788-797, 1 Jan.1, 2024, doi: 10.1109/JSEN.2023.3256090.
  17. Z.F. Luo, A.X. Zhang, W.X. Huang, S. Shao, Y.S. Liu, T. Wu, Y. Zou. “Aluminum Nitride Thin Film Based Reconfigurable Integrated Photonic Devices,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 29, no. 3, May-June 2023, Art no. 9300119, doi: 10.1109/JSTQE.2023.3245290.
  18. S. Shao, Z. Luo and T. Wu, “Electro-acoustic Phase Modulator based on AlScN Thin Film,” in IEEE Electron Device Letters, vol. 44, no. 5, pp. 817-820, May 2023, doi: 10.1109/LED.2023.3259440.
  19. J. Cai, Y. Wang, D. Jiang, Y. Gu, L. Lou, F. Gao, and T. Wu, “Photoacoustic Imaging Based on Broadened Bandwidth Aluminum Nitride Piezoelectric Micromachined Ultrasound Transducers,” in IEEE Sensors Letters, vol. 7, no. 4, pp. 1-4, April 2023, Art no. 2500604, doi: 10.1109/LSENS.2023.3254593.
  20. Y. Wang, L. Zhang, B. Wang, J. Cai, Y. A. Gu, L. Lou, X. Wang, and T. Wu, “Microwave-induced thermoacoustic imaging with a multi-cell AlScN piezoelectric micromachined ultrasonic transducer“, Appl. Phys. Lett. 122, 133702 (2023). doi:10.1063/5.0140069.
  21. S. Wu, K. Liu, W. Wang, W. Li, T. Wu, H. Yang, X, Li, “Aluminum Nitride Piezoelectric Micromachined Ultrasound Transducer Arrays for Non-Invasive Monitoring of Radial Artery StiffnessMicromachines, 14, no. 3: 539. Feb. 2023. https://doi.org/10.3390/mi14030539
  22. K. Liu, Y. Lu and T. Wu, “7.5 GHz Near-Zero Temperature Coefficient of Frequency Lithium Niobate Resonator,” in IEEE Electron Device Letters, doi: 10.1109/LED.2022.3230911.
  23. S. Shao, Z. Luo, K. Liu, and T. Wu, “Lorentz-force gyrator based on AlScN piezoelectric thin film“, Appl. Phys. Lett. 121, 213505 (2022). doi:10.1063/5.0122325
  24. J. Cai, Y. Wang, D. Jiang, S. Zhang, Y. Gu, L. Lou, F. Gao, and T. Wu. “Beyond Fundamental Resonance Mode: High-Order Multi-Band AlN PMUT for in Vivo Photoacoustic Imaging.” Microsystems & Nanoengineering 8, no. 1: 116. doi:10.1038/s41378-022-00426-7
  25. J. Wu et al., “Advanced Surface Acoustic Wave Resonators on LiTaO₃/SiO₂/Sapphire Substrate,” in IEEE Electron Device Letters, vol. 43, no. 10, pp. 1748-1751, Oct. 2022, doi: 10.1109/LED.2022.3200418.
  26. Z.Q. Pan et al., “Onsite Non-Line-of-Sight Imaging Via Online Calibration,” in IEEE Photonics Journal, 2022, doi: 10.1109/JPHOT.2022.3207785.
  27. Y. Qian et al., “Analysis of Abnormal GIDL Current Degradation Under Hot Carrier Stress in DSOI-MOSFETs,” in IEEE Transactions on Electron Devices, 2022, doi: 10.1109/TED.2022.3204513.
  28. J. Wu et al., “Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 69, no. 8, pp. 2579-2584, Aug. 2022, doi: 10.1109/TUFFC.2022.3179699.
  29. Nie, Ran, Shuai Shao, Zhifang Luo, Xiaoxu Kang, and Tao Wu. “Characterization of Ferroelectric Al0.7Sc0.3N Thin Film on Pt and Mo ElectrodesMicromachines 2022, 13(10): 1629. doi:10.3390/mi13101629
  30. Luo, J. Cai, S. Zhang, Y. Gu, L. Lou and T. Wu, “Nonlinearity of Piezoelectric Micromachined Ultrasonic Transducer Using AlN Thin Film,” in IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control, vol. 2, pp. 96-104, 2022, doi: 10.1109/OJUFFC.2022.3182926.
  31. Peng Wu, Junxiang Cai, Yuxi Wang, Pengli Liang,Yi Wang, Jun Yan , Tao Wu, “Elastocaloric-like effect in strain-mediated Mn3SnC/PZT magnetoelectric hetero-composite for solid-state refrigeration”, Acta Materialia (2022): 118154. doi.org: 10.1016/j.actamat.2022.118154
  32. Z.F. Luo, S. Shao, K. Liu, Y. Lu, A. Mazzalai, C. Tosi, and T. Wu, “Al0.7Sc0.3N butterfly-shaped laterally vibrating resonator with a figure-of-merit (kt2·Qm) over 146“, Appl. Phys. Lett. 120, 173508, 2022, doi:10.1063/5.0090226.
  33. S. Shao, Z. Luo, Y. Lu, A. Mazzalai, C. Tosi and T. Wu, “High Quality Co-Sputtering AlScN Thin Films for Piezoelectric Lamb-Wave Resonators,” in Journal of Microelectromechanical Systems, vol. 31, no. 3, pp. 328-337, June 2022, doi: 10.1109/JMEMS.2022.3161055.
  34. Y. Lu, K. Liu, T. Wu, “Dual-Axis MEMS Resonant Scanner Using 128°Y Lithium Niobate Thin-Film”. Acoustics, 4(2), 313-328, 2022. doi:10.3390/acoustics4020019.
  35. S. Shao, Z. Luo, Y. Lu, A. Mazzalai, C. Tosi and T. Wu, “Low Loss Al0.7Sc0.3N Thin Film Acoustic Delay lines,” in IEEE Electron Device Letters, vol. 43, no. 4, pp. 647-650, April 2022, doi: 10.1109/LED.2022.3152908.
  36. Y. Wang, K. Yadagiri, P. Wu, and T. Wu , “Temperature dependent magnetostatic and dynamic properties of soft magnetic FeGaB/Al2O3 thin films for microwave applications“, AIP Advances 12, 035027 (2022) doi:10.1063/9.0000348.
  37. J-Q. Wang, Z.-D. Zhang, S.-Y. Yu, H. Ge, K.-F. Liu, T. Wu, X.-C. Sun, L. Liu, H.-Y. Chen, C. He, M.-H. Lu, and Y.-F. Chen, “Extended topological valley-locked surface acoustic waves“, Nature Communication 13, 1324 (2022). doi:10.1038/s41467-022-29019-8.
  38. P. Wu, J. Yan, P. Liang, Z. Zhu, and T. Wu, “Magnetic Field-Oriented Electrical Transport Properties in Antiperovskite Mn3SnC”. Phys. Status Solidi RRL, 2100614, 2022. doi:10.1002/pssr.202100614.
  39. Z. Luo, S. Shao and T. Wu, “Al0.78Sc0.22N Lamb Wave Contour Mode Resonators,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, doi: 10.1109/TUFFC.2021.3136337.
  40. K. Yadagiri, Y. Wang, and T. Wu. “Ferromagnetic resonance and spin-wave exchange stiffness of FeGaB/Al2O3 multilayer thin film stack for microwave applications.” Materials Chemistry and Physics 279, 125776, 2022. doi: 10.1016/j.matchemphys.2022.125776.
  41. K. Yadagiri, Y. Wang, P. Wu, and T. Wu. “Ferromagnetic resonance properties of multilayer FeGaB/Ta/FeGaB structure.J Mater Sci: Mater Electron (2022): 1-10. doi: 10.1007/s10854-021-07577-9.
  42. K. Yadagiri, J. Long, Y. Wang, Z. Zhu, and T. Wu, “Comparison of Magnetodynamic Properties on Square Patterned of FeGab and Al2O3/FeGaB Thin Films”. Available at SSRN http://dx.doi.org/10.2139/ssrn.3990803
  43. Z-D. Zhang, S.-Y. Yu, H. Ge, J.-Q. Wang, H.-F. Wang, K.-F. Liu; T. Wu; C. He, M.-H. Lu, and Y.-F. Chen. “Topological Surface Acoustic Waves,” in Physical Review Applied, 16, no. 4 (10/07/2021): 044008. doi: 10.1103/PhysRevApplied.16.044008.
  44. S. Shao, Z. Luo and T. Wu, “High Figure-of-Merit Lamb Wave Resonators based on Al0.7Sc0.3N Thin Film,” in IEEE Electron Device Letters, vol. 42, no. 9, pp. 1378-1381, Sep. 2021, doi: 10.1109/LED.2021.3100036.
  45. Z-H. Qin, S.-M. Wu, Y. Wang, K.-F. Liu, T. Wu, S.-Y. Yu, Y.-F. Chen. “Solidly Mounted Longitudinally Excited Shear Wave Resonator (YBAR) Based on Lithium Niobate Thin-Film,” in Micromachines, 12, no. 9: 1039, Aug. 2021. doi: 10.3390/mi12091039
  46. J. Wu, S. Zhang, H. Zhou, P. Zheng, L. Zhang, Z. Li, Y. Wang, T. You, K. Huang, T. Wu, and X. Ou, “A New Class of High-Overtone Bulk Acoustic Resonators Using Lithium Niobate on Conductive Silicon Carbide,” in IEEE Electron Device Letters, vol. 42, no. 7, pp. 1061-1064, July 2021, doi: 10.1109/LED.2021.3079436.
  47. Y. Liu, T. Wu, M. Fu, “Interleaved Capacitive Coupler for Wireless Power Transfer“, in IEEE Transactions on Power Electronics, vol. 36, no. 12, pp. 13526-13535, Dec. 2021, doi: 10.1109/TPEL.2021.3086629.
  48. Z. Luo, S. Shao, T. Wu, “Characterization of ALN and AlScN film ICP etching for micro/nano fabrication”, Microelectronic Engineering, 111530, 2021.2, doi:10.1016/J.MEE.2021.111530.
  49. J. Li , B. Wang , D. Zhang , C. Li , Y. Zhu , Y. Zou , B. Chen , T. Wu , X. Wang, “A Preclinical System Prototype for Focused Microwave Breast Hyperthermia Guided by Compressive Thermoacoustic Tomography”, IEEE Transactions on Biomedical Engineering, vol. 68, no. 7, pp. 2289-2300, July 2021, doi: 10.1109/TBME.2021.3059869.
  50. Y. Wang, Y. Chen, Y. Zhang, Z. Zhu, T. Wu, X. Kou, P. Ding, R. Corcolle, and J. Kim, “Experimental Characterization of ALD Grown Al2O3 Film for Microelectronic Applications.Advances in Materials Physics and Chemistry, 11, 7-19, 2021.01, doi: 10.4236/AMPC.2021.111002.
  51. K. Yadagiri, Y. Wang, and T. Wu. “Temperature-dependent exchange stiffness of spin-wave in Ta/CoFeB by ferromagnetic resonance spectroscopy.” IEEE Transactions on Magnetics, vol. 57, no. 1, 2021.1. doi: 10.1109/TMAG.2020.3035724.
  52. D. Xia, B. Zhang, H. Wu, and T. Wu, “Optimization and Fabrication of an MOEMS Gyroscope Based on a WGM Resonator,” Sensors, vol. 20, no. 24, p. 7264, 2020.12. doi: 10.3390/s20247264.
  53. A. Gao, K. Liu, J. Liang and T. Wu, “AlN MEMS filters with extremely high bandwidth widening capability”, (Nature Publishing Group) Microsystems & Nanoengineering, 6, 74, 2020. DOI: 10.1038/s41378-020-00183-5
  54. K.Yadagiri, and T.Wu, “The thickness of buffer layer and temperature dependent magneto dynamic properties of Ta/​FeGaB/​Ta tri-layer”, J. Magn. Magn. Mater. Vol. 515, pp.167277, 2020. DOI: 10.​1016/​j.​jmmm.​2020.​167277
  55. M. Huang, M. Sun, X. Yu, S. He, S. Liu, W. M. Nau, Y. Li, T. Wu, Y. Wang, S. Chang, and J. He, “Reliably Probing the Conductance of a Molecule in a Cavity via van der Waals Contacts”, The Journal of Physical Chemistry C, 2020, 124, 29, 16143-16148. DOI: 10.1021/acs.jpcc.0c02411
  56. A. Gao, J. Zou and T. Wu, “Narrowband Impedance Transformer With Extremely High Transformation Ratio of 200,” in IEEE Electron Device Letters, vol. 40, no. 11, pp. 1820-1823, Nov. 2019
  57. M. Li, C. Chen, R. Lu, Y. Yang, T. Wu and S. Gong, “Temperature Stability Analysis of Thin-Film Lithium Niobate SH0 Plate Wave Resonators,” in Journal of Microelectromechanical Systems. vol. 28, no. 5, pp. 799-809, Oct. 2019
  58. W. Z. Zhu* , T. Wu*, G. Chen , C. Cassella , M. Assylbekova, M. Rinaldi, and N. McGruer, “Design and Fabrication of an Electrostatic AlN RF MEMS Switch for Near-Zero Power RF Wake-Up Receivers”, IEEE SENSORS JOURNAL, vol. 18, no. 24, pp. 9902-9909, 2018.12
  59. J. Domann, T. Wu, T.-K Chung, G. P. Carman, “Strain-mediated magnetoelectric storage, transmission, and processing: Putting the squeeze on data”, MRS Bulletin, 43(11), 848-853, 2018.11
  60. Huaping Li, Lili Zhou, and T. Wu, “Sodium dodecyl benzene sulfonate for single-walled carbon nanotubes separation in gel chromatography.” Diamond and Related Materials 88 (2018): 189-192.
  61. T. Wu, S. S. Hamann, A. Ceballos, C.E. Chang, O. Solgaard and R. T. Howe, “Design and Fabrication Of Silicon Tessellated Structures For Monocentric Imagers”, (Nature Publishing Group) Microsystems & Nanoengineering, (2016) 2, 16019
  62. S. Cherepov, P. K. Amiri, J. G. Alzate, K. Wong, M. Lewis, P. Upadhyaya, J. Nath, M. Bao, A. Bur, T. Wu, G. P. Carman, A. Khitun, and K. L. Wang, “Electric-field-induced spin wave generation using multiferroic magnetoelectric cells,” Appl. Phys. Lett., vol. 104, pp. 082403, 2014.
  63. L. Hockel, S. D. Pollard, K. P. Wetzlar, T. Wu, Y. Zhu, and G. P. Carman, “Electrically controlled reversible and hysteretic magnetic domain evolution in nickel film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (011) heterostructure,” Appl. Phys. Lett., vol. 102, no. 24, p. 242901, 2013.
  64. M. Buzzi, R. V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting, “Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures,” Phys. Rev. Lett., vol. 111, pp. 027204, 2013.
  65. Tao Wu, Gregory P. Carman, “Ultra-low power electrically reconfigurable magnetoelectric microwave devices“, J. Appl. Phys.,vol. 112, pp. 073915, 2012.
  66. M.Q. Bao, G.D. Zhu, Kin L. Wong, J.L. Hockel, M. Lewis, J. Zhao, T. Wu, P. K. Amiri, and K. L. Wang, “Magneto-electric tuning of the phase of propagating spin waves“, Appl. Phys. Lett., vol. 101, pp. 022409, 2012.
  67. Y.C. Che, A. Badmaev, A. Jooyaie, T. Wu, J.L. Zhang, Chuan Wang, K. Galatsis, H. A Enaya, and C.W. Zhou, “Self-Aligned T-gate High-Purity Semiconducting Carbon Nanotube RF Transistors Operated in Quasi Ballistic Transport and Quantum Capacitance Regime,” ACS Nano, 6 (8), pp. 6936 – 6943, 2012.
  68. J. L. Hockel, A. Bur, T. Wu, K. P. Wetzlar , G. P. Carman, “Electric field induced magnetization rotation in patterned Ni ring/ [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) heterostructures“, Appl. Phys. Lett. vol. 100, pp. 022401, 2012.
  69. T. Wu, M. Bao, A. Bur, H. K. D. Kim, K. P. Mohanchandra, C. S. Lynch, and G. P. Carman, “Electrical tuning of metastable dielectric constant of ferroelectric single crystals for low-power electronics,” Appl. Phys. Lett., vol. 99, pp. 182903, 2011.
  70. T. Wu, A. Bur, K. Wong, P. Zhao, C. S. Lynch, P. K. Amiri, K. L. Wang, and G. P. Carman, “Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices,” Appl. Phys. Lett., vol. 98, pp. 262504, 2011.
  71. F. Zhang, Y.-C. Perng, J. H. Choi, T. Wu, T.-K. Chung, G. P. Carman, C. Locke, S. Thomas, S. E. Saddow, J.P. Chang, “Atomic layer deposition of Pb(Zr,Ti)Ox on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes,” J. Appl. Phys., vol. 109, pp. 124109, 2011.
  72. T. Wu, P. Zhao, M. Bao, A. Bur, J. L. Hockel, K. P. Mohanchandra, C. S. Lynch, and G. P. Carman, “Domain Engineered Switchable Strain States in Ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) Single Crystals,” J. Appl. Phys., vol. 109, pp.124101, 2011.
  73. A. Bur, T. Wu, J. L. Hockel , C.-J. Hsu, H. K.D. Kim, T.-K. Chung, K. Wong, K. L. Wang, and G. P. Carman, “Strain-induced magnetization change in patterned ferromagnetic nickel nanostructures,J. Appl. Phys., vol. 109, pp.123903, 2011.
  74. P. Zhao, S. Goljahi, W. Dong, T. Wu, P. Finkel, R. Sahul, K. Snook, J. Luo, W. Hackenberger, and C. S. Lynch, “The strength of PIN–PMN–PT single crystals under bending with a longitudinal electric field“, Smart Materials and Structures 20 (5), 055006 (2011)
  75. T. Wu, A. Bur, K. Wong, J. L. Hockel, C.-J. Hsu, H. K.D Kim, K. L. Wang, and G. P. Carman, “Electric-poling-induced magnetic anisotropy and electric-field-induced magnetization reorientation in magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure,” J. Appl. Phys., vol. 109, pp. 07D732, 2011
  76. J. L. Hockel, T. Wu, and G. P. Carman, “Voltage Bias Influence on the Converse Magnetoelectric Effect of PZT/Terfenol-D/PZT Laminates,” J. Appl. Phys., vol. 109, pp. 064106, 2011
  77. T. Wu, A. Bur, J. L. Hockel, K. Wong, T.-K. Chung, and G. P. Carman, “Electrical and Mechanical Manipulation of Ferromagnetic Properties in Polycrystalline Nickel Thin Film,” IEEE Magn. Lett.,vol. 2, pp. 6000104, 2011
  78. T. Wu, A. Bur, P. Zhao, K. P. Mohanchandra, K. Wong, K. L. Wang, C. S. Lynch, and G. P. Carman, “Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure,” Appl. Phys. Lett., vol. 98, pp. 012504, 2011
  79. T. Wu, M. Emmons, T.-K. Chung, J. Sorge, and G. P. Carman, “Influence of mechanical load bias on converse magnetoelectric laminate composites “, J. Appl. Phys., vol. 107, pp. 09D912-3, 2010
  80. T. Wu, T.-K. Chung, C.-M. Chang, S. Keller, and G. P. Carman, “Influence of electric voltage bias on converse magnetoelectric coefficient in piezofiber/Metglas bilayer laminate composites,” J. Appl. Phys., vol. 106, no.5, 054114, 2009.
  81. T. Wu, C.-M. Chang, T.-Kan Chung, and G. P. Carman, “Comparison of Effective Direct and Converse Magnetoelectric Effect in Laminate Composite,” IEEE Trans. Magn., vol. 45, no. 10, 2009